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ABSTRACT 
 

In this work, a closed solution for a class of one-dimensional neutron transport problems in Cartesian geometry will 

be presented, considering linearly anisotropic scattering effects in heterogeneous media, using the Analytical 

Discrete Ordinates Method (ADO Method). In this context, the mathematical model will describe a steady-state 
phenomenon, with neutron sources located inside and on the boundaries of the domain of interest. In the process, the 

integro-differential transport equation is transformed into an ODE system by the SN angular discretization, which 

homogeneous solution is obtained with a quadratic eigenvalues problem with reduced order. A particular solution in 

terms of constants is used. To validate the code, the method and provide benchmark results, test problems will be 

treated and results will be discussed.  

 

1. INTRODUCTION 

 

 Nowadays, there are many engineering applications involving particles transport and radiation 

(Badruzzaman,1991; Sanchez,2012). Among these, the energy generation by nuclear sources has taken a prominent 

position, mainly for its zero emission of pollutants to the atmosphere. Considered as alternative energy sources, the 
nuclear power plants are characterized by producing large amounts of electricity from thermal energy generated by 

the controlled use of nuclear reactions. However, large volumes of water required for the cooling process and steam 

generation makes convenient to build these industrial facilities near to the rivers and the coast, raising concerns about 

the environmental impact. 

 In this sense, deep penetration problems, characterized by domains with several mean free paths of extension, 

have been object of particular interest because of their potential application in shielding calculation, which is directly 

related with personnel, equipment and environment protection (Oliveira, 2007). 

 Shielding problems have been dealt with in different ways by many researchers along the years. On deterministic 

methods field, Marchuk and Bel'skaya (1967) performed a shielding analysis applying spherical harmonics method 

associated with conjugated equations in a three-dimensional medium, while Veselov (1967) presented the spatial, 

angular and energy distribution of a three-dimensional neutrons transport in infinity medium using various 

approximations. In Giacomazzi (2000), the LTSN method was used to compute the absorbed doses shielding in one-
dimensional homogeneous and heterogeneous media, and the Adomian's decomposition method was presented by 
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Vargas et al. (2003) to solve linear and non-linear discrete-ordinates problems in one-dimensional geometries. On the 

other hand, using a probabilistic approach, Wagner and Haghighat (1998) used the Monte Carlo method associated 

with discrete ordinates adjoint functions for one-dimensional shielding calculations. 

 Therefore, the contribution of this work will be the development of a closed form solution for the discrete 

ordinates version of the integro-differential transport equation for a class of problems in one-dimensional Cartesian 

geometry, in homogeneous and heterogeneous media with linearly anisotropic scattering influence by the ADO 

method. The ADO method (Barichello and Siewert, 1999) has been successfully used for solving a wide range of 

one-dimensional RGD problems (Scherer, Prolo Filho and Barichello, 2009a; Scherer, Prolo Filho and Barichello, 

2009b;) and neutron transport problems in different geometries (Barichello, Rodrigues and Siewert, 2002; Tres et al. 
2014; Ferreira, Emmendorfer and Prolo Filho, 2015), offering accurate solutions in a concise manner through a 

simpler implementation code. Some advantages of this approach include the independence of iterative methods, the 

reduced order of the derivation-associated eigenvalues problem and the low computational cost. Besides that, the 

spatial variable is treated analytically, resulting in a more efficient formulation on the computational point of view. 

 In this way, in the next sections, the heterogeneous version of the one-dimensional discrete ordinates neutron 

transport equation is introduced. Then, the ADO method is applied, a reduced order eigenvalues problem is obtained, 

and the homogeneous solutions are explicitly defined. Due to the neutron source, particular solutions in terms of 

constants are shown, completing the general solution for the presented problems. In the end, computational aspects 

and numerical results are discussed. 

 

2. MATHEMATICAL MODEL 

 
 According to Barros et al. (2010), the discrete ordinates version for a neutron transport equation in one-

dimensional Cartesian geometry, applied to a layered heterogeneous medium with linearly anisotropic scattering, in 

steady-state regime, is written as 

 

               (1) 

 

with , being  associated to the number of discrete directions of the Gauss-Legendre quadrature set (Stroud 

and Secrest, 1966), and , where  corresponds to the number of layers in which the domain is subdivided. 

Besides that,  [cm] and  are, respectively, the spatial and directional variables wherein the angular fluxes  

[n/cm2.s] are evaluated,  are the weights associated to the Gauss-Legendre points ,  [n/cm3.s] represents a 

neutron source inside the layer ,  [cm-1],  [cm-1] and  [cm-1] are the total, isotropic and linearly 

anisotropic macroscopic cross sections for the layer . 

 In order to apply the ADO method (Barichello and Siewert, 1999), the discrete directions are rearranged so that, 

for ,  corresponds to the positive directions and  is relative to the negative directions. Consequently, 
Eq. (1) is subdivided in two, as  

 

  

   (2) 

 

and 

 

  

   (3) 

 

for  and . 

 

 

 
 

 

 

 

 

 

Figure 1. Domain of heterogeneous neutron transport problems. 
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 On the cases presented here, the neutron sources can be located inside of each layer  and on the boundaries, so 

particular solutions will be needed. 

 

3. THE ADO METHOD 

 

 Following some basic steps of the ADO method, a homogeneous solution for the transport problem described by 

Eqs. (2) and (3) is proposed in the form 

 

                      (4) 

 

for , , where the separation constant  is associated with the elementary solution . 
 This way, substituting Eq. (4) into Eqs. (2) and (3), the algebraic systems 

 

  

   (5) 

 
and 

 

  

   (6) 

 

for  and  are obtained. 

 Now, two auxiliary functions are defined as 

 

                      (7) 

 

                      (8) 

 

such that, if Eqs. (5) and (6) are added, the expression 

 

                   (9) 

 

is obtained. 

 Now, subtracting Eq. (6) from Eq. (5), another relation between  and  is obtained, and it is 

given by 

 

                 (10) 

 

 From Eqs. (9) and (10), after some algebraic manipulations, an eigenvalue problem in terms of  is 

obtained, in the form 

 

             (11) 

 

for  and . The matrix representation of Eq. (11) is given by 

 

                     (12) 
 

where  is a vector with components , and 

 

                     (13) 

 

 The  matrices in Eq. (12) are such that 
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                     (14) 

 

and 
 

                 (15) 

 

for  and . 

 With the eigenvalue problem solved, the values of  for  are obtained, such that the values of the 

separation constants  are found by Eq. (13) and, from Eqs. (7) and (8), the elementary solution can be written as 

 

                    (16) 

 

and 

 

                   (17) 

 

for  and . 

 Since the separation constants occur in pairs, , with real values, and using the symmetry properties of the 

elementary solutions 

 

                     (18) 

 

                     (19) 

 

the homogeneous solutions for Eqs. (2) and (3), in an explicit form, are given by 

 

              (20) 

 

and 

 

 ,             (21) 

 

for  and each region . Here, the arbitrary constants  are to be determined, and they depend 

on the boundary conditions and particular solutions. Despite all boundary conditions used here are prescribed, the 
ADO method has proven also effective in dealing with more general boundary conditions.  

 It is important to observe that, in this formulation, from a set of  discrete ordinates equations, an eigenvalue 

problem of order  was derived, which means a relevant gain in comparison with other similar discrete ordinates 

approaches, where characteristic equations or eigensystems of order  are obtained, for the same quadrature scheme 

(Vilhena and Barichello, 1991; Nunes and Barros, 2009). Furthermore, the expressions for the homogeneous 

solutions, in terms of spatial variable, are analytical, contributing to the low computational cost and high accuracy of 

the method. 

 

4. PARTICULAR SOLUTION 
 

 Since the problem formulated by Eq. (1) has a non-homogeneous source term, particular solutions have to be 

defined. For that, a simpler particular solution can be considered for each layer  and each direction in terms of 

constants. So, for , 

 

                      (22) 

 

and 
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                      (23) 

 

are taken such that, substituting them into Eqs. (2) and (3), a coupled  linear system is obtained, as follows 

 

                      (24) 
 

where 

 

                     (25) 

 

                (26) 

 

                       (27) 

 

and 

 

                      (28) 

 

for  and . 

 Solved the linear system, the particular solutions are obtained and the general solutions will be given by 

 

                    (29) 

 

for  and . 

 

5. COUPLING SYSTEM 

 

 In order to explicitly define the solutions for the class of problems proposed here, boundary and interface 

conditions are needed. Then, 

 

                      (30) 

 

                      (31) 

 

are used for , being  and  the constant incident fluxes at the boundaries and, to ensure the uniformity 

of the fluxes between the neighboring regions, the interface condition is given by 
 

                     (32) 

 

for  and . 

 The Eqs. (30)-(32) lead to a  system which solution provides the value of all coefficients  and, 

consequently, makes Eq. (29) become completely established. After that, relevant quantities can be computed, such 

as the Scalar Flux. 

 

6. NUMERICAL RESULTS AND COMPUTATIONAL ASPECTS 

 

 For the approach presented here, two test cases were considered where, in one of them, it was possible to 

compare the ADO method with other numerical methods for validation. In order to generate the results profiles, the 

Scalar Flux was chosen as quantity of interest, defined for each layer  by 
 

                   (33) 
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corresponding to the average angular flux in terms of the directional variable. 

 

 In Nunes and Barros (2009), Problem 1 was solved following the parameters presented on Tab. 1, considering a 

40cm domain width, with vacuum boundary condition on  and unitary incident flux on . On the 

related reference, three different numerical methods are used: Diamond difference method (DD), Step method and 

CN method. All of them subdivide the domain into cells, where average angular fluxes are established. The numeric 

aspect consists in how the relationship between neighboring cells is, and an iterative process is used to compute it.  

 
 

Table 1. Parameters used for Problem 1. 

 Region 1 Region 2 Region 3 

     

 1.00 1.00 1.00 

 0.97 0.95 0.99 

 0.00 0.00 0.00 

 0.00 0.00 1.00 

 
 

 On the other hand, with the ADO method, it is possible to obtain explicit expressions for the solutions (analytical 

in terms of the spatial variable), making it possible to compute the scalar fluxes values in any spatial position of 

interest without using iterative methods or interpolation process.  

 In terms of agreement, the ADO method becomes closer to DD method (Tab. 2), getting three to five significant 

digits of concordance. The resulting shape presented on Fig. 2 agrees with the proposed parameters, the phenomenon 

and the values of Tab. 2. On the convergence analysis (Tab. 3), two to five significant fixed digits are shown, still 

being possible to obtain more accurate profiles just by increasing the value of . 

 

 

Table 2. Problem 1 — Validation of Scalar Fluxes profiles. Comparison among different methods  
using S8 quadrature scheme. 

 DD STEP CN ADO 

0.00 0.852638 0.851075 0.850716 0.852637 

20.00 0.481766 0.512658 0.504515 0.481821 

40.00 7.090416 7.126999 7.245023 7.090392 

 

 

Table 3. Problem 1 — Convergence analysis of Scalar Fluxes profiles computed by ADO  

method (this work). 

 S2 S4 S6 S8 

0.00 0.852605 0.852638 0.852638 0.852637 

20.00 0.459243 0.481301 0.481703 0.481821 

40.00 7.045806 7.086130 7.089433 7.090392 

 

 

 Problem 2 approaches a five regions transport problem, following the parameters defined on Tab. 4, considering 

a 50cm domain width, with vacuum boundary conditions on  and .  

 It is important to highlight (about the ADO method) that it wasn't necessary to deal with ill-conditioned systems 
and, despite splitting the domain in layers, in every and each of the parts, explicit analytical solutions (in terms of the 

spatial variable) were obtained. Besides that, all the parameters that arise during the process are real, so the use of 

complex variable techniques is not necessary. Furthermore, the convergence for Problem 2 can be noted on Tab. 5, 

where up to three digits can be fixed by increasing the value of .  
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 In order to complete the study about the behavior of the Scalar Flux in a layered heterogeneous problem, the Fig. 

3 shows that while layers with bigger isotropic scattering reach higher values, regions with bigger anisotropic 

scattering suffer a kind of flattening effect, that means the isotropic scattering contribute more to the height of the 

profiles, even with the source terms contribution. 

 

 

Table 4. Parameters used for Problem 2. 

 Region 1 Region 2 Region 3 Region 4 Region 5 

      

 1.00 1.00 1.00 1.00 1.00 

 0.98 0.96 0.94 0.92 0.90 

 0.90 0.92 0.94 0.96 0.98 

 0.00 1.00 0.00 1.00 0.00 

 

 

Table 5. Problem 2 — Convergence analysis of Scalar Fluxes profiles computed by ADO method (this work). 

 S2 S4 S6 S8 

0.00 1.866138 1.760767 1.752773 1.750319 

10.00 10.939594 11.044818 11.050256 11.051874 

20.00 9.789710 9.812068 9.813365 9.813713 

30.00 7.146850 7.127936 7.128151 7.128202 

40.00 5.038048 5.074692 5.075679 5.075948 

50.00 0.721845 0.674190 0.668338 0.666519 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2. Scalar Fluxes profiles for the Problem 1 computed by ADO method (this work) 

using S8 quadrature scheme. 
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Figure 3. Scalar Fluxes profiles for the Problem 2 computed by ADO method (this work)  

using S8 quadrature scheme. 

 

 

7. CONCLUSIONS 

 

 The present work shows the viability and performance of the ADO method in the solution of some classes of 

neutron transport problems, in one-dimensional Cartesian geometry, where it was possible to compare some results 

with the available literature and provide some benchmark profiles. 

 In the tables presented in this study, convergence of the results is noted when changing the Gauss-Legendre 

quadrature order. The increasing of the number of quadrature points leads to a better representation of the integral 
term, despite also increasing the number of discrete directions. In general, the profiles present a good agreement with 

the literature, approximately three to five significant digits. Also, it was observed that the anisotropy factor of the 

medium causes some shape effects on the Scalar Flux. 

 Here, some good features of the ADO method can be highlighted: hence it doesn't use computational spatial grid 

to evaluate the angular fluxes, the calculations can be made without iterative schemes, making the computational 

effort relatively low and spending less than 2 seconds (in a 3.10 GHz Intel Core I5 processor with 8GB of RAM) for 

each profile. Part of this performance was also due to the reduced order eigenvalue systems and the explicit form of 

the solutions, that are analytical in terms of the spatial variable. The code, which implementation is simple, was 

developed making use of the free software Octave 4.0, accepting arbitrary quadrature schemes, and working with any 

quadrature order. 

 Thus, the objectives proposed in this work can be considered achieved, as it was possible to provide closed form 
solutions to the proposed problems in a concise and accurate way, showing profiles with compatible physical 

behavior in terms of parameters, proposal of solutions and boundary conditions used. 

 

8. ACKNOWLEDGEMENTS 

 

 The authors would like to thank CAPES for master's degree's scholarship, and the PPGEO postgraduate program. 

 

9. REFERENCES 

 

Badruzzaman, A., 1991. ―Computational methods in nuclear geophysics‖. Progress in Nuclear Energy, Vol. 25, pp. 

265-290. 

Barichello, L.B. and Siewert, C.E., 1999. ―A discrete-ordinates solution for a non-grey model with complete 
frequency redistribution‖, JQSRT, Vol. 62, pp. 645-675. 

Barichello, L.B., Rodrigues, P. and Siewert, C.E., 2002. ―An analytical discrete-ordinates solution for dual-mode 

heat transfer in a cylinder‖, JQSRT, Vol. 73, pp. 583-602. 

135



Barros, R.C., Alves Filho, H., Plat, G.M., Oliveira, F.B.S. and Militão D.S., 2010. ―Analytical reconstruction scheme 

for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates 

transport model in slab geometry‖. Annals of Nuclear Energy, Vol. 37, pp. 1461-1466. 

Ferreira, C.E.S., Emmendorfer, L.R., and Prolo Filho, J.F., 2015. ―Formulação nodal aplicada à problemas de 

transporte bidimensional em geometria cartesiana‖, Scientia Plena, Vol. 11, pp. 1-10. 

Giacomazzi, E.T.P., 2000. ―Cálculo de dose absorvida em blindagens múltiplas, devido a nêutrons monoenergéticos, 

usando o método LTSN‖, Master dissetation, UFRGS, Porto Alegre. 

Marchuk, G.I. and Bel’skaya, Z.N., 1967. ―Application of conjugate equations to the calculation of radiation 

shielding‖, NASA Technical Reports, NASA TT F-411. 
Nunes, C.E.A., Barros, R.C., 2009. ―Aplicativo computacional para cálculo de blindagem com modelo de transporte 

SN unidimensional e monoenergético‖, In Proceedings of INAC 2009 International Nuclear Atlantic Conference, 

Rio de Janeiro, Brazil. 

Oliveira, F.B.S., 2007. ―Problema inverso de reconstrução analítica aproximada da solução da equação de transporte 

de partículas neutras monoenergéticas em geometria unidimensional cartesiana com espalhamento isotrópico‖. 

Ph.D. thesis, UERJ, Rio de Janeiro, Brazil. 

Sanchez, R., 2012. ―Prospects in deterministic three-dimensional whole-core transport calculations‖, Nuclear 

Engineering and Technology, Vol. 44, pp.113-150. 

Scherer, C.S., Prolo Filho, J.F. and Barichello, L.B., 2009a. ―An analytical approach to the unified solution of kinetic 

equations in rarefied gas dynamics. I. Flow problems‖, Z. Angew. Math. Phys., Vol. 60, pp. 70-115. 

Scherer, C.S., Prolo Filho, J.F. and Barichello, L.B., 2009b. ―An analytical approach to the unified solution of kinetic 

equations in rarefied gas dynamics. II. Heat transfer problems‖, Z. Angew. Math. Phys., Vol. 60, pp. 651-687. 
Stroud, A.H., Secrest, D., 1966. ―Gaussian quadrature formulas‖, Prentice-Hall Inc, New Jersey, USA. 

Tres A., Picoloto, C.B, Prolo Filho, J.F., Da Cunha, R.D. and Barichello, L.B., 2014.―Explicit formulation of a nodal 

transport method for discrete ordinates calculations in two-dimensional fixed-source problems‖, Kerntechnik, 

Vol. 79, pp. 155-162. 

Veselov, V.M., 1967. ―Investigation of the accuracy of various approximations in the problem of three-dimensional 

energy and angular distribution of neutrons‖, NASA Technical Reports, NASA TT F-411. 

Vargas, R.M.F., Cardona, A.V., Vilhena, M.T. and Barros, R.C., 2003. ―On the decomposition method applied to 

linear and non-linear discrete ordinates problems in slab geometry‖, Progress in nuclear energy, Vol. 42, No. 4, 

pp. 439-456. 

Vilhena, M.T., Barichello, L.B., 1991. ―A new analytical approach to solve the neutron transport equation‖, 

Kerntechnik, Vol. 56 pp. 334-336. 
Wagner, C.J. and Haghighat A., 1998. ―Automated variance reduction of Monte Carlo shielding calculations using 

the discrete ordinates adjoint function‖. Nuclear Science And Engineering, Vol. 128, pp. 186–208. 

 

 

10. RESPONSIBILITY NOTICE 
 

The content of the text is the entire responsibility of the author(s), and does not necessarily reflect the opinion of 

the Editor, or the members of the Editorial Board. 

136

https://www.researchgate.net/publication/282390962_Formulacao_nodal_aplicada_a_problemas_de_transporte_bidimensional_em_geometria_cartesiana
https://www.researchgate.net/publication/282390962_Formulacao_nodal_aplicada_a_problemas_de_transporte_bidimensional_em_geometria_cartesiana
http://www.scielo.br/revistas/rbfar/iedboard.htm

	Anais_SEMENGO_v1.pdf
	Artigo18_final.pdf


