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ABSTRACT  
 

Buckling is an instability phenomenon that can happens when a slender plate is subjected to axial compression 

loads. In addition, perforated plates are often necessary in the engineering field. Throughout this article, the 

Constructal Design Method, which is based on the Constructal Theory, has been used to evaluate the influence of the 

hole on thin steel plates under elastic buckling. For that, the different types of holes analyzed were both transversal 

and longitudinal oblong. They were all placed in the center of the plate. The geometry of the hole varied according 

to the degree of freedom H0/L0, which relates the dimensions of each type of different hole. The size of the 

perforation are varied by means the hole volume fraction () parameter, that represents the relation between the 

volume of the hole and the total volume of the plate (without hole). The main goal is to achieve the greatest critical 

load for the perforated plates. To do so, the ANSYS software, based on the Finite Element Method (FEM), has been 

used to numerically analyze the elastic buckling in each case. It has been observed the importance of the geometry 

when seeking superior performances: through a simple fluctuation of the geometry of the hole, once the volume 

fraction was kept constant, it was possible to achieve a significant increase on the critical loads. 

 

 

1. INTRODUCTION 

 

Whenever a structural element has two dimensions much larger than one, and is plane before any load is applied 

on it, it is called a plate (Yamaguchi, 1999). Thin elements, such as a slender plate, can be subjected to several 

different types of deformation. Among them, there is buckling, which is an instability phenomenon that can occur if 

a slender and thin-walled plate (plane or curved) is subjected to axial pressure (i.e. compression). At a certain given 

critical load, the plate will buckle suddenly in the out-of-plane transverse direction (Akesson, 2007).  

Thin plates are widely used in different engineering areas such as oceanic and naval. Nevertheless, sometimes, the 

plates need to be perforated in order to reduce the structure’s weight, to grant access and even to improve aesthetics. 

As an example, holes are necessary in order to make ship hatches. 

For a plane plate, it is possible and relatively easy to calculate the buckling critical load. However, if the plate is 

perforated, the use of analytical calculation becomes impracticable. 

Many authors have been publishing studies for the last decades about elastic plate buckling. Among those, some 

of the papers may be highlighted:  

El-Sawy and Nasmy (2001) studied the influence of the shape, dimensions and position of the perforations on 

slender plates submitted to elastic plate buckling phenomenon. The plates had different sizes and were numerically 

simulated by means the Finite Element Method (FEM).  

Shimizu (2007) has showed that, when a plate is perforated, compression stresses appear locally near the hole 

under a tensile load, and the compression stress may cause local buckling – it´s so called tension buckling  of the 

plate. 

Moen and Schafer (2009) developed expressions to represent the influence of holes under the critical buckling 

load in bent or compressed plates. Such expressions were verified through numerical simulations, using the 

ABACUS software, which is based on the FEM.  

Cheng and Zhao (2010) have focused their studies on the cutout-strengthening of perforated steel plates subjected 

to uniaxial compressive loads.  

Real and Isoldi (2010) and Real and Isoldi (2011) studied the elastic buckling phenomenon in thin steel plates 

analyzing  the effect of circular holes dimension and location on its critical load. 

So far, the Constructal Design has been used mostly in the Fluid Mechanics and Heat Transfer areas, in order to 

achieve optimal geometries. Yet, it is also feasible to use it for the Solid Mechanics, once we consider structural 

elements as systems whose shape may be varied in order to achieve a better stress flow. Furthermore, it is important 

to highlight the fact that studies about the influence of the Constructal Design and elastic buckling in pursuance of 

optimal geometries have been developed only by the group of Solid Computational Mechanics from Universidade 

Federal do Rio Grande (FURG). Among these, we may highlight: Rocha et al. (2012), Rocha et al. (2013) and Isoldi 

et al. (2013). 

Therefore, the main goal of this paper is to evaluate the influence of different type of hole, while seeking the 

optimal geometry in order to achieve a maximized critical buckling load. For that, the plate’s size was kept the same, 

while the size and geometry of the hole have been modified according to the Constructal Design Method. Two 

different types of perforations were analyzed: Transversal Oblong and Longitudinal Oblong. These cutouts are 

centered on a plate which has a width of H = 1 m and a length of L = 2 m. Previously, a computational model 

verification was developed in ANSYS® software. This software is based on the Finite Element Method (F.E.M.). 

Some examples of oblong cutouts used in offshore structures can be viewed in Fig. 1. 
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Figure 1. Oblong holes in offshore structures. 

 

 

2. MATERIALS AND METHODS 

 

Initially, a solid plate, i.e. a plate with no hole, was analyzed numerically and analytically, evaluating its critical 

buckling load Pcr, aiming to verify the computational model developed in the ANSYS software. Moreover, the 

analytical critical load was adopted as a reference value in the other cases. 

 

2.1 Plate Buckling 

 

As previously mentioned, in several situations a plate is subjected to uniaxial pressure. The slenderness of these 

components makes them susceptible to instabilities such as buckling (Real and Isoldi, 2010).  Throughout this paper, 

a slender rectangular steel plate (Young’s modulus E = 210 GPa and Poisson’s ratio  = 0.3) will be considered 

subjected to a compressive axial load P. Its length, width and thickness are L = 2 m, H = 1 m and t = 10 mm, 

respectively. The plate is simply supported on its four edges in the out of plane direction (z) as it is shown on Fig. 2.  
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Figure 2. Rectangular solid plate subjected to uniaxial load. 

 

Equation (1) shows the analytical solution in order to determine the critical load of a non-perforated plate, which 

defines the occurrence of elastic buckling (Åkesson, 2007). 
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where π is a mathematical constant and k is the buckling coefficient given by Eq. (2): 
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where m is the number of half waves that occur in the longitudinal direction, therefore, defining the buckling mode 

of the plate. 

Thus, considering that two half waves are generated on the longitudinal direction (m = 2), through Eq. (2), we 

obtain a buckling coefficient k = 4.0. Nevertheless, through the use of Eq. (2), it is possible to determine the critical 

buckling load of Pcr = 759.20 kN/m for the plate shown on Fig. 2.   

 
2.2 Computational Model 

 
Through the ANSYS software, the SHELL93 finite element was used in all simulated cases. It has eight nodes 

and reduced integration. Each node has six degrees of freedom: three translations (ux, uy, uz) and three rotations (x, 

y, z) (ANSYS, 2005). 

The elastic eigenvalue analysis was adopted in order to numerically study the buckling phenomenon. The finite 

elements equilibrium equations for this type of analysis involve the solution of a homogeneous algebraic equation 

system whose lowest eigenvalue corresponds to the critical buckling load and the associated eigenvector represents 

the first buckling mode of the plate (Moen and Schafer, 2009). 

The formulation used in the analysis includes both linear and non-linear strain components. Thus, the total 

stiffness matrix [K] is obtained by the sum of the conventional stiffness matrix for small deformations, [KE], with 

another matrix [KG], called geometrical stiffness matrix. The matrix [KG] not only depends on the geometry but also 

on the internal forces existing at the beginning of the load, {P0}. Then, the total stiffness matrix for a plate at the load 

level {P0} can be written as (Przemieniecki, 1985): 

 

   E GK K K                            (3) 

Once the load reaches a level {P} = λ{P0}, where λ is a scalar the stiffness matrix can be defined as: 

 

   E GK K K                         (4) 
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The governing equilibrium equations for the plate can be written as: 

 

     0E GK K U P                 (5) 

where {U} is the total displacement vector, which may, therefore be given by: 

     
1

0E GU K K P 


               (6) 

At buckling load, the plate presents a large increase in the displacements without a load increase. Through 

mathematical definition it is possible to determine the inverse matrix as the adjoint matrix divided by the determinant 

of the coefficients, then the displacements {U} tend to infinity when: 

 

 det 0E GK K       (7) 

Equation (7) represents an eigenvalue problem which, once solved, produces the smallest eigenvalue, λ1, that 

corresponds to the critical load {Pcr} = λ1{P0} in which buckling occurs. Furthermore, the displacement vector 

associated {U} (eigenvector) defines the buckling mode shape. In the ANSYS software, the eigenvalue/eigenvector 

problem is solved through the numerical method of Lanczos (ANSYS, 2005). 

Finally, to verify the computational model, the critical load of a non-perforated plate was numerically evaluated 

and the result was compared with the analytical solution given by Eq. (1). The plate was discretized and grid 

independence was reached through the adoption of a triangular element with a side’s size 50.00 mm (H/20), 

generating a mesh with 1,814 finite elements (Fig. 3a). The numerical result for the critical buckling load was 755.30 

kN/m. Therefore, the difference between this approach and the analytical solution (759.20 kN/m as earlier 

mentioned) was -0.51%, which verifies the computational model for the numerical analysis for linear buckling 

problems. Figure 3b shows the buckling mode of the non-perforated plate. Two half waves were formed, indicated 

by red (z positive direction) and blue (z negative positive direction) colors. 

 

 

Figure 3. Non-perforated plate: (a) Finite elements mesh; (b) First buckling mode shape 

 

Besides, the computational modeling previously presented was also verified for the analysis of the buckling 

behavior of thin perforated steel plates. The same plate used in the first verification was studied, however a centered 

circular hole was considered. In Table 1 the results for the critical buckling load were compared with those obtained 

by the numerical study developed by the reference, for several hole diameters. As in the first verification an excellent 

agreement was also obtained here, being -0.53% the maximal difference encountered. 

 

Table 1. Comparison of critical buckling load for plate with centered circular hole. 

Hole diameter (m) 
Pcr (kN/m) 

El-Sawy and Nazmy (2001) 

Pcr (kN/m) 
Present work 

Difference 

(%) 

0.10 766.19 763.56 -0.34 

0.20 789.36 786.50 -0.36 

0.30 825.08 820.87 -0.51 

0.40 849.26 847.78 -0.17 

0.50 901.54 898.79 -0.31 

0.60 986.46 981.22 -0.53 
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2.3 The Constructal Design Method 

 

In order to apply the Constructal Theory (Bejan, 2000; Bejan and Lorente, 2008), the Constructal Design 

Method was used. This method is based on restrictions and objectives. Thereby, the analysis of the influence of the 

geometries and types of perforation becomes possible. In this paper the holes were centered on the plate and the 

Constructal Design was used to evaluate the influence of two different types of perforation: Transversal Oblong (Fig. 

4a) and Longitudinal Oblong (Fig. 4b). One can notice that Oblong holes are formed by a rectangle with two 

semicircles on its edges. 

 

 
Figure 4. Oblong holes: (a) Transversal; and (b) Longitudinal. 

 

In addition, four different volume fractions   were used  = 0.05,  = 0.08,  = 0.15 and  = 0.20). The volume 

fraction parameter is defined by the ratio between the hole volume and the total volume of the plate. The volume 

fraction (for the Transversal Oblong hole was calculated through Eq. (8): 
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Nevertheless, for the Longitudinal Oblong Hole the volume fraction was calculated through Eq. (9): 
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(9) 

Finally, the variation of the hole geometry is defined by the degree of freedom H0/L0, which relates the 

characteristic dimensions of the perforation (see Fig. 4). Its variation must respect a constraint which limits the 

minimal spacing among hole edges and plate edges, given by: H – H0 = 200 mm and L – L0 = 200 mm. 
It is important to emphasize that for a specific value of , the variation of the ratio H0/L0 promotes only a 

geometric variation in the hole while its volume is kept constant. This fact allows a consistent comparison among 

different hole geometries. 

 

 

4. RESULTS AND DISCUSSION 

 
In all the simulated cases, the material and mesh type were the same as the ones used in the procedure of the 

verification of the computational model.  

In order to normalize the comparisons among the results, an dimensionless critical load (Pcr,dim) was used. Pcr,dim 

is defined by the relationship between  the critical load of the perforated plate and the critical load of the non-

perforated plate. Figure 5 shows the variation of Pcr,dim for each volume fraction according to the degree of freedom 

H0/L0. 
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Figure 5. Magnitudes of Pcr,dim due to H0/L0 variation. 

 

On Figure 5, for each different , the dashed lines represent the Longitudinal Oblong holes, and the continuous 

lines represent the Transversal Oblong ones. Thus, it is possible to infer that both types of holes complement each 

other. For 0.00 < H0/L0 < 1.00 the oblong hole is defined as longitudinal, while for H0/L0 > 1.00  the oblong hole is 

transversal. If a value of H0/L0 = 1 was considered, then a circular hole would be generated. One can also note that 

the Pcr,dim maximum for the Longitudinal Oblong cutouts is always obtained with H0/L0 = 0.95. On the other hand, 

for the Transversal Oblong perforations an intermediate value of the ratio H0/L0 conducts to the Pcr,dim maximized. 

Furthermore, for all volume fractions, the Transversal Oblong holes reached a higher critical load in comparison to 

the longitudinal oblong holes. Figure 5 also shows that the lower the value of the volume fraction , the higher is the 

number of possibilities for H0/L0., being this observation in agreement with the Constructal Design Method. 

Another important observation from Fig. 5 is that the variation of the ratio H0/L0 also promotes the obtainment of 

critical loads lower and higher than the critical load of the plate with no hole, i.e. the geometry (shape) of the 

perforation can improve or worsen the plate mechanical behavior. This aspect is in agreement with already published 

researches as: Real and Isoldi (2010), Real and Isoldi (2011), Rocha et al. (2012), Rocha et al. (2013) and Isoldi et al. 

(2013).  

Considering the Longitudinal Oblong perforations with  = 0.20 (see Fig. 5), it is possible to observe in Fig. 6 

the buckling mode for the plates with lowest and highest values of H0/L0, where the blue, yellow and red colors are 

representing, respectively, the minimum (negative z direction), null and maximum (positive z direction) 

displacements.  

 

 
 

Figure 6. Buckling mode of plates with Longitudinal Oblong cutout and  = 0.20: (a) H0/L0 = 0.15 and (b) (H0/L0)o = 

0.95. 

 

From Fig. 6 we can understand the influence of the hole geometry in the mechanical behavior of the plates, once 

for H0/L0 = 0.15 (Fig. 6a) only one half wave is formed while for (H0/L0)o = 0.95 (Fig. 6b) the buckled configuration 

of the plate is formed with three half waves. Therefore, a great critical load is required to form three half waves in 

the plate, explaining why the ratio (H0/L0)o = 0.95 is the optimized geometry in this case. 

In a similar way, the geometry variation influence in the elastic buckling behavior of the plates with Transversal 

Oblong perforation and  = 0.20 (see Fig. 5) can be viewed in Fig. 7. Figures 7a, 7b and 7c show, respectively, the 

Transversal Oblong holes with H0/L0 = 1.05, (H0/L0)o = 1.16 and H0/L0 = 1.81. The same color scale of Fig. 6 is used. 
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Figure 7. Buckling mode of plates with Transversal Oblong cutout and  = 0.20: (a) H0/L0 = 1.05, (b) (H0/L0)o = 

1.16 and (c) H0/L0 = 1.81. 

 

One can notice that in Figs. 7a and 7b three half waves are formed, while in Fig. 7c two half waves are 

generated. The geometric configuration with (H0/L0)o = 1.16 is the optimal shape in this case, however the difference 

between its critical load and the critical load reached with H0/L0 = 1.05 is very small. This fact explain the 

resemblance in buckling modes presented in Figs. 7(a) and 7(b).       

In addition, some aspects observed on Fig. 5 are easier to perceive on Figs. 8 and 9 when, respectively, the 

values of the optimized geometries, (H0/L0)o, and the values of the maximized dimensionless critical loads, (Pcr,dim)m, 

are plotted as a function of the hole volume fraction, , variation. 

 

 
Figure 8. Optimal geometries for each hole volume fraction. 

 

 
Figure 9. Maximum dimensionless critical buckling load for each hole volume fraction. 
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On Fig. 8, it is possible to notice that the optimal critical load was obtained when Ho/Lo = 0,95 for all the 

different volume fractions for the Longitudinal Oblong hole, as already observed in Fig. 5. Whereas, considering the 

Transversal Oblong cutout, for  = 0.05 the optimal load was achieved with a very higher (Ho/Lo)o = 4.66 when 

compared to the degree of freedom (Ho/Lo)o = 1.16 for  = 0.20. 

From Fig. 9 it is possible to observe that, for both types of perforations, the increase of the hole size (or the 

increase of the hole volume fraction) promotes a rise in the magnitude of the critical buckling load. This behavior 

can also be explained by means the analysis of the buckled configuration of plates. For example, considering the 

optimized geometries for the Transversal Oblong cutout with the extreme values of hole volume fraction, it is 

evident in Fig. 10a that when  = 0.05 there is two half wave formation while in Fig. 10b for  = 0.20 are generated 

three half waves. Highlighting that in Fig. 10 the blue, green and red colors represent, respectively, the minimum 

(negative z direction), null and maximum (positive z direction) displacements. 

 

 
 

Figure 10. Buckling mode of plates with Transversal Oblong cutout: (a)  = 0.05 and (H0/L0)o = 4.66 and (b)  = 0.20 

and (H0/L0)o = 1.16. 

 

Finally, it is worth to emphasize that all results presented in this work were obtained considering the elastic 

buckling, i.e. a linear elastic material behavior was taken into account. Therefore, these results  are rigorously valid 

only if the calculated critical buckling load does not cause normal stresses above the material’s yielding stress, when 

it is applied to the plate. If the yielding stress limit is surpassed, a nonlinear finite element analysis (elasto-plastic 

buckling analysis) should be performed, including geometrical and material nonlinearities. 

 

 

4. CONCLUSIONS 

 

In order to evaluate the influence of type, shape and size of perforations in the elastic buckling behavior of thin 

steel plates, the Constructal Design Method allied to the numerical simulation were applied. To do so, rectangular 

plates with centered Oblong Transversal and Oblong Longitudinal perforations were considered. The shape of the 

cutout was varied by the degree of freedom H0/L0 (ratio between the characteristics dimensions of the hole) while its 

size was changed by the hole volume fraction () parameter (ratio between the hole volume and the total plate 

volume). 

The results obtained indicated that for the same hole type and the same hole volume fraction the variation of the 

perforation geometry promoted by the ratio H0/L0 can conduct to a superior mechanical performance, which in this 

case is the increase of the critical buckling load. Improvements of until around 200% were noticed only due to the 

geometric variation of the hole. 

With regard of the hole size, the variation of the  parameter indicates, for the studied cases, that higher values 

for the critical load can be achieved with the increase of the hole size, being this fact relates with the stress 

redistribution caused by the hole presence in the plates.  

In addition, the comparison between the Oblong Transversal and Oblong Longitudinal hole types shows that 

Transversal Oblong perforation allows to reach higher critical loads for all studied hole volume fractions. 

Therefore, the application of the Constructal Design associated  with the computational modeling can be a 

powerful tool for the structural engineering analysis.  
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